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This paper presents a numerical method directed towards the simulation of flows
with mass transfer due to changes of phase. We use a volume of fluid (VOF) based
interface tracking method in conjunction with a mass transfer model and a model
for surface tension. The bulk fluids are viscous, conducting, and incompressible. A
one-dimensional test problem is developed with the feature that a thin thermal layer
propagates with the moving phase interface. This test problem isolates the ability of
a method to accurately calculate the thermal layers responsible for driving the mass
transfer in boiling flows. The numerical method is tested on this problem and then
is used in simulations of horizontal film boiling.c© 2000 Academic Press
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I. INTRODUCTION

Boiling flows are ubiquitous in the energy and processing industries due to the fact that
phase change processes are an efficient way to transport heat. Despite decades of research
there are still many aspects of boiling flows that are not well understood. The small spatial
scales and fast time constants of many of the physical processes associated with boiling
hinder the acquisition of experimental data. During the last two decades computational
methods have been developed to provide solutions for fluid flow problems with moving
interfaces separating gas and liquid phases. There is now a small but growing body of
literature on the application of these methods to boiling flows. It is evident that these methods
will help provide insight into many aspects of boiling flows heretofore unattainable.

The computation of boiling flows remains one of the most challenging realms of compu-
tational fluid dynamics. These flows are characterized by the discontinuity across the phase
interface of many of the flow variables. These discontinuities pose several computational
difficulties requiring special treatment. In addition, the location of the phase interface is
not known a priori and must be found as part of the solution procedure. Early methods that
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addressed these difficulties were of the Lagrangian type in which computational elements
move with the phase interface thereby enabling the special treatment of the region proximal
to the phase interface. The papers of Son and Dhir [1] and of Welch [2] provide simulation
results in which it is clear that Lagrangian based methods have a limited applicability due to
their inability to cope with gross interfacial motion or changes in interface topology. Later
methods overcame this limitation by implementing Eulerian based approaches. Juric and
Tryggvason [3] used source terms in the continuity equation and the energy equation in
an enhancement of the method of Unverdi and Tryggvason [4] to simulate horizontal film
boiling. Son and Dhir [5] used a similar idea in a modification of the level set method of
Sussmanet al. [6] enabling them to perform simulations of axisymmetric horizontal film
boiling. Their simulations of water near the critical state enabled them to provide a detailed
description of the bubble release pattern during horizontal film boiling which corroborated
previous experimental results.

This purpose of this paper is to introduce a modification of the volume of fluid (VOF)
method suitable for the simulation of boiling flows. We feel that the VOF method has features
that make it a viable option for simulations of the type discussed above. One desirable feature
is that the interface is advected with a conservation equation. This results in calculations
that preserve the volumes of the two phases in flows without mass transfer. We note that the
level set method of Sussmanet al.[6], used by Son and Dhir [5], does not have this volume
preservation property. More recent level set implementations have addressed this problem
[7] through the addition of a volume preservation constraint and can likely be extended to
the mass transfer case. Another desirable feature is that the interfacial geometry associated
with the VOF method may be used to construct heat flux vectors on both the liquid and the
vapor side of the interface that take into account the discontinuity of the conductivity and
of the temperature gradient. We note that similar calculations are possible with the level set
method as well as with the method of Tryggvason. A one-dimensional similarity solution
will be presented that isolates the ability of a method to accurately calculate the thermal
layers responsible for driving the mass transfer in boiling flows.

We consider incompressible Newtonian fluids with behavior described in both phases by
the set of partial differential equations.

ρ

(
∂v
∂t
+ v · ∇v

)
= −∇P + ρg+∇ · [µ(∇v+ (∇v)T )] (1)

∇ · v = 0 (2)

ρcp

(
∂ϑ

∂t
+ v · ∇ϑ

)
= ∇ · (k∇ϑ)+8. (3)

Here g is the gravitational force andv, P, cp, ρ, ϑ, µ, k, and8 are the fluid velocity,
pressure, specific heat, density, temperature, viscosity, conductivity, and viscous dissipation,
respectively.

II. SPECIAL TREATMENT OF THE INTERFACIAL REGIONS

Interface tracking. The presence of the two phases requires that some approach must be
implemented to advect the phase interface. We advect the interface using Young’s enhance-
ment [8] of the VOF method [9]. In our code, Young’s method is implemented at the end
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FIG. 1. Mixture cell with piecewise linear interface. Left, cell geometry; right, cell flux calculation.

of a time cycle to calculate the new density field using the conservation of mass statement
for each cell

∂

∂t

∫
Vc

ρ dV +
∫
Sc

ρv · n dS= 0, (4)

whereVc is the cell volume andSc is the cell surface. Once the new cell densities are found,
the cell void fractions are calculated

α = ρ − ρg

ρl − ρg
. (5)

Detailed description of Young’s method may be found in Refs. [10, 11]. Our implementation
of Young’s method may be summarized as the following sequence of steps.

(1) The phase interface is modeled as a piecewise linear curve. Figure 1 shows a typical
two-phase cell with an embedded phase interface. The orientation of the curve within each
two-phase cell is determined by the unit normal vector,

n = ∇α|∇α| . (6)

The gradients in this calculation use a nine-point stencil that is known to produce a more
accurate normal vector [11].

(2) Given the orientation of the planar surface that represents the interface in a cell,
determine the location of the oriented surface such that the surface partitions the cell into
liquid and gas regions of the correct volume based upon the void fraction (volume fraction
of liquid) of the cell. These steps are often referred to as the interface reconstruction steps
[11].

(3) Given the location of the planar interface in each two-phase cell and the velocity
at a junction face between two cells, the mass flux is determined from simple volumetric
considerations. A typical geometric calculation of this sort is shown in Fig. 1. Once the
mass is fluxed across the cell boundaries in one direction, the interface is reconstructed
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before mass is fluxed in the second direction. This approach is referred to as a direction
split approach [10].

Mass transfer. Mass transfer across the phase interface is modeled in a manner inspired
by Juric and Tryggvason [3]. We consider a computational cell containing a volume of the
liquid phase adjacent to a volume of the vapor phase. We may write a mass balance for each
phase as

d

dt

∫
Vg(t)

ρ dV +
∫

Sg(t)

ρv · n dS+
∫

SI (t)

ρ(v− vs) · n dS= 0 (7)

d

dt

∫
Vl (t)

ρ dV +
∫

Sl (t)

ρv · n dS−
∫

SI (t)

ρ(v− vs) · n dS= 0. (8)

HereVl , Sl ,Vg, andSg are the volume and surface of the liquid and vapor regions, respec-
tively. SI is the phase interface at the common boundary of the two regions, moving with
the velocity,vs. On SI the normal vectorn points into the liquid phase. Summing these,
taking into account the incompressibility of each phase, and noting that the overall volume
is invariant we obtain the conservation of mass statement for the cell volume,∫

Sc

v · n dS+
∫

SI (t)

‖(v− vs)‖ · n dS= 0. (9)

Here,‖9‖ indicates the jump in9 across the phase interface andSc is the surface bounding
the computational cell. Use of the mass and energy jump conditions at the interface

‖ρ(v− vs)‖ · n = 0 (10)

‖ρh(v− vs)‖ · n = −‖q‖ · n (11)

allows us to express the jump term in the conservation of mass equation as

‖(v− vs)‖ · n =
(

1

ρl
− 1

ρg

)‖q‖ · n
hlg

. (12)

Hereh is the enthalpy andhlg = hg− hl is the latent heat of vaporization whileq is the heat
flux vector. In this work, we consider the phase interface to be at the saturation temperature
of the liquid pressure

ϑs = ϑsat(Pl ). (13)

The set of equations, Eq. (11) through Eq. (13), incorporates various simplifying assump-
tions. Surface properties other than surface tension are neglected. We neglect kinetic energy
and viscous work terms as well as surface tension work terms in the energy jump and we
neglect the viscous dissipation in the energy equation. These are common approximations
in the analysis of liquid-vapor phase change phenomena [18] and have been used in the
numerical studies of liquid-vapor phase change [1, 2, 5]. The temperature condition given
by Eq. (13) is a common approximation for which justification may be found in [5]. We
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note that there are various conditions other that Eq. (13) appearing in the literature (see,
for example, Refs. [2, 3]) but the exact condition is still an open question of physics. At
any rate, these simplifying assumptions leave us with a model that contains the dominant
physics. The inclusion of terms resulting from the relaxation of these assumptions, should
they be deemed important, is straightforward.

The energy jump condition indicates the dependence of the mass transfer rate across the
interface on the heat flux vector in the normal direction in both the liquid and vapor phases.
The heat flux vector will generally be discontinuous and any smoothing of this vector will
distort the mass transfer amount. We utilize the interface geometry associated with the VOF
method to construct a proper heat flux jump source term for use in Eq. (12). By a proper
heat flux jump, we mean that the normal components of the temperature gradients are
calculated without reaching across the phase interface. The required geometry is provided
in the advection step described above and is shown in Fig. 1. Given the unit normal vector,n,
and the parametersn which provides the location of the interface we apply the temperature
condition, Eq. (13), to the point located at the center of the piecewise linear segment (the
interface point in Fig. 1). It is then a simple matter to calculate liquid side temperature
gradients as well as vapor side temperature gradients. We then are able to construct a proper
heat flux jump across the phase interface by multiplying the normal temperature gradients
in each phase by their corresponding conductivities. In addition, it is important that the
cells proximal to the interface but not containing the phase interface see proper temperature
gradients in the convection and diffusion terms of the energy equations. We ensure this by
using the temperature gradients used in forming the energy jump condition to extrapolate
liquid and vapor temperatures at mixture cell centers thus ensuring that the cells neighboring
mixture cells also see the proper temperature gradients.

Surface tension model.The momentum equations are augmented using the continuum
surface tension model of Brackbillet al. [12]

ρ(α)

(
∂v
∂t
+ v · ∇v

)
= −∇P + ρ(α)g+∇ · [µ(α)(∇v+ (∇v)T )] + σκ∇α̃, (14)

whereα̃ is a smoothed void field andκ is the curvature of the surface defined by this smoothed
void field. Due to the smoothing, the surface tension force is applied to a transition region
a few cells thick centered at the interface. The curvature calculation is implemented using
second-order central differences and discussion on the effects of smoothing and on accuracy
maybe found in [12]. The density and viscosity vary with the void field as

ρ(α) = ρlα + ρg(1− α) (15)

µ(α) = µlα + µg(1− α). (16)

The surface tension is constant in this formulation thus the method is not appropriate
for flows in microgravitational environments in which the temperature dependence of the
surface tension provides the driving impetus for fluid motion.

Summarizing these developments, for computational cells containing the phase interface
we use the augmented momentum equation, Eq. (14), the modified conservation of mass
statement, Eq. (9), and energy jump condition Eq. (11). The discontinuity of the velocity
field, the velocity gradients, and the viscosity in this formulation are treated by smoothing
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which is a departure from the philosophy used in treating the discontinuous temperature
gradients and conductivity. The method presented in this paper is directed towards flows
driven by mass transfer due to phase change which motivates the special treatment of the
interfacial heat flux vector described above. Future efforts will address better the coupling of
the discontinuities associated with the momentum equation to the discontinuities associated
with the energy equation.

III. NUMERICAL APPROXIMATIONS

The spatial discretization of the governing partial differential equations is obtained using
a traditional MAC staggered grid [13] with scalars located at cell centers and velocity
components located at cell edges. All spatial derivatives are centered with the exception of
the convection terms in the momentum and the energy equations. Due to the discountinuity
in velocity across the phase interface, the momentum convection terms are discretized
using a second order ENO method [14]. The convection terms in energy are discretized
using the Leonard method [15]. Note that a high-resolution scheme is not necessary for
the energy equation, as we are not discretizing energy convection terms across the phase
interface.

The temporal discretization may best be described as a semi-implicit forward Euler
method. We begin a time cycle by solving the explicit energy equation in the bulk phases,

ϑn+1 = ϑn + δt
{
−v · ∇ϑ + κ

ρcp
∇2ϑ

}n

. (17)

The new temperature field is then used to form the interfacial heat flux jump appearing in
the mass source term and the continuity and momentum equations are discretized in time
as ∫

Sc

vn+1 · n dS+
∫

SI (t)

(
1

ρl
− 1

ρg

)‖qn+1‖ · n
hlg

dS= 0 (18)

vn+1 = vn − δt (v · ∇v)n − δt

ρn
{∇Pn+1+ (ρg)n +∇ · [µ(∇v+ (∇v)T )]n + σ(κ∇α̃)n}.

(19)

The new time velocity is eliminated from these discrete equations and the resulting pressure
equation is solved by an interative method. The simulations in this paper use the ILU pre-
conditioned conjugate gradient squared (CGS) method of Sonneveld [16]. Once the new
time pressure is obtained the new time velocity is found from the discrete momentum
equations and the new density field is found from the discretization of Eq. (4)

ρn+1 = ρn + δt
∫
Sc

ρvn+1 · n dS. (20)

As discussed earlier, Young’s method is employed at this stage of the calculation. We note
that cells that are not mixture cells or are not adjacent to mixture cells do not require this
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calculation. Once the new density field is found, the new void fraction may be calculated
along with the mixture cell interfacial geometry.

The scheme we have just described is second order in space and first order in time.
The scheme has time step restrictions due to the explicit treatment of the convection and
diffusion terms in the momentum and energy equations. The scheme also has a time step
restriction due to the explicit treatment of the surface tension terms. This limit is usually
expressed as restricting a capillary wave in an infinite medium to travel no more than half
a cell width during a time step. This limit is generally the most restrictive of the three and
satisfaction of this limit often results in solutions that are converged in time, even with a
first-order method.

IV. ONE-DIMENSIONAL VERIFICATION PROBLEMS WITH MASS TRANSFER

The Stefan problem.We consider first the one-dimensional Stefan problem considered
by Son and Dhir [5] and shown in Fig. 2. The liquid and vapor are considered incompressible
and are initially in quiescent equilibrium. The vapor experiences an increase in temperature
on the solid boundary and a thermal profile develops in the vapor driving mass transfer at
the interface. In this flow, the vapor will be motionless while the liquid is pushed away from
the solid boundary with the interface also moving away from the solid boundary. The liquid
profiles are uniform and the energy equation in the vapor phase may be expressed as

∂ϑ

∂t
= α ∂

2ϑ

∂x2
, 0≤ x ≤ δ(t), (21)

whereδ(t) is the coordinate of the phase interface. The problem is closed with the boundary
conditions

ϑ(x = δ(t), t) = ϑsat
(22)

ϑ(x = 0, t) = ϑwall

and the interfacial energy jump condition

ρgvshlg = −k
∂ϑ

∂x

∣∣∣∣
x=δ(t)

. (23)

FIG. 2. Left, domain definition for Stefan problem; right, domain definition for sucking interface problem.
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The Neumann solution to this one-phase Stefan problem may be shown to apply to the
flow considered here and is given by [17]

δ(t) = 2λ
√
αt (24)

ϑ(x, t) = ϑwall +
(
ϑsat− ϑwall

erf(λ)

)
erf

(
x

2
√
αt

)
, (25)

where erf(x) is the error function andλ is a solution to the transcendental equation.

λ exp(λ2)erf(λ) = cp(ϑwall − ϑsat)

hlg
√
π

. (26)

We simulate this case using the properties of water at the three saturation pressures 101.3,
571.0, and 14044.0 kPa. These saturation pressures correspond to the density ratiosρl/ρg=
1605.2, 301.4, and 7.08, respectively. We use a grid spacing of1x= 0.1 mm and set only
the first computational cell to be vapor with the second cell being a two-phase cell. The
temperature profiles are initialized as a simple linear profile with the wall temperature set
to 25 K higher than the saturation temperature.

Figure 3 shows the liquid velocity as well as the interface position as functions of time
for both the analytic solution and the simulation at each pressure. The simulation results
are in excellent agreement with the analytic solution despite the fact that so few vapor
cells are used to describe the early time temperature profiles. This result is due the fact
that the analytic temperature solution is actually close to a linear function. In addition, this

FIG. 3. Liquid velocity and interface position for Stefan problem. Top curve, Psat= 101.3 kPa; middle curve,
Psat= 571.0 kPa; bottom curve, Psat= 14044.0 kPa.
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analytic solution is characterized by an extensive thermal layer on the vapor side of the
interface. Such a thermal layer poses little difficulty numerically in that the temperature
gradient driving the mass transfer is easily resolved without requiring fine grid resolution.
The situation for boiling flows in which the mass transfer is driven by temperature gradients
associated with thin thermal layers will be more computationally challenging. With this in
mind we present a one-dimensional test case in which a thin thermal layer on the liquid side
drives the mass transfer.

The sucking interface problem.We consider a one-dimensional flow in which the liquid
and vapor phases are incompressible. The problem configuration is shown in Fig. 2 and we
note that the vapor phase is motionless, existing at the saturation temperature while the liquid
phase will move at a uniform velocity and exist in a metastable state at a distance removed
from the phase interface. This situation will result in a thin thermal layer moving with the
interface. The diffusive spreading of the thermal layer will be counteracted somewhat by a
sucking of the thermal layer towards the interface thus the thermal layer will tend to remain
thin.

We make the following transformation of the spatial coordinate

ξ = x −
∫ t

0
vs(t) dt. (27)

This transformation defines the coordinateξ such that the interface is located atξ = 0. The
energy equation in the liquid phase transforms to

∂ϑ

∂t
+ (v − vs)

∂ϑ

∂ξ
= α ∂

2ϑ

∂ξ2
(28)

with boundary and initial conditions

ϑ(ξ = 0, t) = ϑsat

ϑ(ξ →∞, t) = ϑo (29)

ϑ(ξ, t = 0) = ϑo,

whereϑo is the liquid temperature in the bulk phase andϑsat is the saturation temperature.
At the interface we have the energy and mass jump conditions

ρ(vl − vs)hlg = −k
∂ϑ

∂ξ

∣∣∣∣
ξ=0

(30)

−ρgvs = ρ(vs − vl ). (31)

Defining the constants

B = α

Cβ
, β = ρg

ρl
, C = k

ρghlg
(32)

and using the mass jump condition to eliminate the liquid velocity we arrive at a simplified
energy equation for the liquid side

∂ϑ

∂t
− βvs

∂ϑ

∂ξ
= α ∂

2ϑ

∂ξ2
, (33)



VOF METHOD FOR FLOWS WITH PHASE CHANGE 671

where the interface velocity is given by

vs = C
∂ϑ

∂ξ

∣∣∣∣
ξ=0

. (34)

We obtain a similarity solution to the energy equation by introducing the parameter

η =
√

1

2α

ξ√
t

(35)

and implementing the transformation

ϑ(x, t) = Bφ(η). (36)

This leads to the ordinary differential equation defining our similarity solution

φ′′ + (η + φ′(0))φ′ = 0 (37)

with transformed boundary conditions

Bφ(η = 0) = ϑsat
(38)

Bφ(η→∞) = ϑo.

This non-linear ordinary differential equation must be solved numerically and in the
results that follow care was taken to ensure that a converged solution was used for com-
parison purposes. Once obtained,φ(η) provides the thermal profile as well as the interface
and liquid velocities for arbitrary fluid properties and arbitrary times.

We simulate this problem with our method using the properties of water at the saturation
pressure of 1 atm. We start our simulations by initializing the liquid temperature profile
to the temperature profile of the similarity solution at 0.1 s. The grid spacing used in the
simulations employs three successively refined grids. The coarse resolution grid has a mesh
spacing of1x= 0.2 mm. The medium and fine resolution grids have mesh spacing of1x=
0.1 mm and1x= 0.05 mm, respectively. The initial thermal layer thickness is 0.476 mm
thus the successive grids capture the initial thermal layer with approximately three cells,
five cells, and ten cells, respectively. Figure 4 shows the resulting liquid speed and interface
positions with respect to time for the three grid resolutions. Figure 5 shows the temperature
profile at the terminal time (1.1 s) of the simulation.

The simulation results indicate that the fine grid solution has converged and that the
temperature profile, the interface position, and the liquid speed are accurately calculated. In
particular we note that the curvature of the temperature profile as well as the discontinuous
temperature gradient are accurately calculated. The three differing resolution grids may be
used to obtain estimates for the order of the method using the computed interface position,
liquid velocity, and temperature gradient at the interface. The resulting estimates for the
order of the method are 1.42, 2.05, and 2.12, respectively. This test problem provides an
indication of the ability of the method to follow a thin thermal layer moving with the
interface thus accurately calculating the temperature gradients responsible for the mass
transfer across the interface.
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FIG. 4. Liquid velocity and interface position for sucking interface problem at Psat= 101.3 kPa. – -–, coarse
grid; –––, medium grid; ——, fine grid;∗, similarity solution.

FIG. 5. Temperature profile for sucking interface problem at Psat= 101.3 kPa and 1.1 s. – -–, coarse grid;
–––, medium grid; ——, fine grid;∗, similarity solution.
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V. SIMULATION OF HORIZONTAL FILM BOILING

The regimes associated with boiling liquids situated above heated walls are usually
described in terms of a “boiling curve” [18]. Briefly, for low wall superheat (wall temperature
above the saturation temperature at the system pressure), the liquid does not vaporize and
the regime is termed the convective heat transfer regime. As the wall superheat is increased,
nucleation sites start to appear and individual bubbles start to form and leave the wall due to
bouyancy forces. This region is known as the nucleate boiling regime. As the wall superheat
is increased the bubbles begin to coalesce on the surface and we enter a regime in which
large portions of the heated surface are covered with vapor. This region is known as fully
developed nucleate boiling and for high enough wall superheat, transition boiling (transition
refers to transition from fully developed nucleate boiling to film boiling). Finally for high
enough wall superheat, the entire surface is immersed in vapor and we have entered a regime
known as film boiling. Film boiling is particularly amenable to numerical simulation as the
difficulties associated with modeling a contact line (the curve defined by the intersection of
the phase interface and the solid wall) do not exist. There exists a handful of correlations for
the case of a horizontal film boiling and these correlations generally assume some sort of
vapor bubble release mechanism for the vapor as it leaves the film and is removed due to the
buoyant forces. One such correlation due to Berenson [19] assumes that the vapor bubbles
are spaced in a square pattern separated by a distance equivalent to the most dangerous
Taylor wavelength given by

λo = 2π

(
3σ

(ρl − ρg)gy

)1/2

. (39)

His correlation also assumes a uniform film thickness and a bubble diameter and height that
are proportional to the bubble spacing. Conservation of mass and momentum in the vapor
film as well as the assumption that heat is transferred across the film due to conduction only
enabled him to arrive at an expression for the Nusselt number

Nu= 0.425

(
ρg(ρl − ρg)gyhlg

kgµg[ϑwall − ϑsat]

)1/4

(λo)
3/4. (40)

This correlation and the physical situation modeled by it are inherently three-dimensional.
We will present two-dimensional simulations with the understanding that the numerical
results cannot completely capture the physics of three-dimensional film boiling but these
simulations do present useful test problems with which to develop methods directed towards
simulating flows with mass transfer. We note also that there are correlations in the literature
thought to be more accurate than the Berenson correlation [18]. We do not expect that two-
dimensional simulations can predict Nusselt numbers with the fidelity necessary to require
comparison to the more accurate correlations.

We consider a two-phase fluid with surface tensionσ = 0.1 N/m, latent heathlg =
10.0 kJ/kg, saturation pressurePsat= 1.0135× 105 Pa, and saturation temperatureϑsat=
500 K. The liquid properties used arekl = 40.0 W/m·K, µl = 0.1 Pa· s,ρl = 200.0 kg/m3,
Cpl = 400.0 J/kg·K, and the vapor properties used arekg= 1.0 W/m·K, µg= 0.005 Pa· s,
Cpg= 200.0 J/kg·K, ρg= 5.0 kg/m3. The high mechanical and thermal diffusivities are
used as the corresponding low cell Reynolds and Peclet numbers allow for the demonstra-
tion of the convergence of the method on a relatively coarse sequence of computational
grids. We take advantage of the symmetry in the problem and use a computational domain
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with width λo/2 and heights of either 3λo/2 or 3λo. We consider the left and right vertical
boundaries to be symmetry boundaries. The bottom boundary is considered a no-slip solid
wall and the top boundary is open with the pressure specified. We initialize the liquid to
be at the saturation state and the vapor temperature to increase linearly from the interface
to the solid wall. In the results that follow we present results reflected across the left-hand
symmetry boundary.

We first present results of a convergence study to ensure that our grid resolution is
adequate. We consider three grids of resolution 16× 48, 32× 96, and 64× 192. The solid
wall is kept at a constant temperature of 10 K above the saturation temperature. The fine
grid simulations initalizes the fifth row of cells with the half cosine wave void profile
α= 0.5+ 0.4 cos(2πx/λo). The coarse and medium resolution grids initialize the void
field such the interface is located at an identical spatial location. Figure 6 shows the phase
interface calculated on the three grids as the first bubble is about to leave the film. Figure 6

FIG. 6. Bubble shape and ratio of vapor void to initial vapor void for three different grid resolutions.
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FIG. 7. Temperature contours spaced 1 K apart for three different grid resolutions. Top, coarse grid; middle,
medium grid; bottom, fine grid.

also shows the vapor volume relative to the initial vapor volume. Figures 7 and 8 give
temperature contours and contours of both components of velocity, respectively. From these
figures we conclude that the medium resolution grid adequately represents the case under
consideration. These simulations were run at a time step equal to one-fourth the capillary
limit of the finest resolution grid. Later simulations using the medium resolution grid were
run at a time step approximately three times as large with no discernable difference. This
corroborates our earlier statement that observing the capillary limit often results in solutions
converged in time.

Film boiling is a quasi-steady phenomenon and we expect that the transients caused by the
artificial prescription of initial conditions will eventually die off leaving us with a numerical
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FIG. 8. Velocity contours for three different grid resolutions. Left column, x-direction component, 10 contours
spaced evenly from−1.36 to 1.36 m/s; right column, y-direction component, 10 contours spaced evenly from
−1.01 to 1.01m/s. Top, coarse grid; middle, medium grid; bottom, fine grid.

solution exhibiting quasi-steady periodicity. In our simulations the early transients are
typified by the release of a few larger bubbles before the quasi-steady bubble release pattern
is realized. Shown in Figs. 9 and 10 are simulation results exhibiting this quasi-steady
behavior for wall superheat values of 5 degrees Celsius and 10 degrees Celsius, respectively.
The local Nusselt number is calculated as the dimensionless heat flux through the wall

Nu= λo

(ϑwall − ϑsat)

∂ϑ

∂y

∣∣∣∣
y=0

. (41)

The Nusselt number in the figures is an averaged value over the width of the solid wall. The
maximum and minimum Nusselt numbers correspond to minimum and maximum average
film thickness, respectively. The interface plots in Figs. 9 and 10 depict the interface at
times near to the minimums and maximums of the averaged Nusselt number. We note that
the small bubbles appearing in Figs. 9 and 10 are not properly resolved on the medium
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FIG. 9. Simulation results for1ϑ = 5 K.
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FIG. 10. Simulation results for1ϑ = 10 K.
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resolution grid but their appearance on the fine resolution grid is similar. This indicates that
they are not likely the flotsam and jetsam commonly appearing with VOF methods on too
coarse a grid.

At a wall superheat of 5 K we observe that as the bubble is near departure, the film
is depleted of vapor and hence the Nusselt number is at the peak value. Similarly, in the
period prior to the bubble formation the vapor film grows hence the Nusselt number is at
the minimum value. At a wall superheat of 10 K we make similar observations but note that
the quasi-steady Nusselt number has two distinct minimums and two distinct maximums.
The figure indicates that there two distinct patterns of bubble release defined by the distance
that the previously released bubble has moved. Figure 11 shows clearly the single release

FIG. 11. Bubble release patterns and velocity fields at time step 35,000 (left) and at time step 40,000 (right).
Top,1ϑ = 10 K; bottom,1ϑ = 5 K.
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pattern for the low-wall superheat case and the two bubble release patterns for the high-wall
superheat case. Figure 11 was generated by running the simulations on a grid twice the height
as that used in the previous plots. We note that in both cases the quasi-steady behavior was
identical as that exhibited in the previous simulations indicating that the behavior described
is not affected by the location of the outflow boundary.

These simulations exhibit expected quasi-steady behavior in that a steady pattern of
bubble release is reached in which ellipsoidal bubbles exit the vapor film and are transported
away due to buoyant forces. Juric and Tryggvason [3] obtained early transient results that
exhibit remarkably different behavior with regard to the bubble release mechanism. In one
of their simulations they obtained mushroom shaped bubbles that remained connected to
the film by a vapor jet. We obtain similar results by considering a fluid with properties that
give the following dimensionless parameters,

ρl

ρg
= 5.18,

µl

µg
= 3.46,

kl

kg
= 2.37,

Cpl

Cpg
= 0.864, Pr = µl Cpl

kl
= 1.92.

Following [3], we define scales for length, velocity, temperature, and heat flux,

lo =
(
µ2

l

/
gρ2

l

)1/3
, (log)1/2, ρghlg/ρl Cpl , ρghlgkl/ρl Cpl lo.

The Morton number and a capillary parameter (Mo, Ca) have the values

Mo= µ4
l g

σ 3ρl
= 1.0× 10−6, Ca= ϑsatCplσ

ρgh2
lglo
= 0.020.

Except for theMo, these parameters correspond to para-Hydrogen at 8.0 atm [20] and are
similar to the parameters used in [3]. We simulate this case using a 64× 320 grid with the
same boundary conditions as were used in the previous simulations with the exception that
the dimensionless wall heat flux,qw = 20.0, is specified rather than the wall temperature.
The interface is initialized in the fifth row of computational cells by setting the void fraction
for cells in this row toα= 0.5+ 0.4 cos(2πx/λo). This corresponds to the non-dimensional
interface heighty= 7.8+ 0.58 cos(2πx/λo).

Figure 12 shows the resulting interface plots as well as temperature contours and velocity
vector plots for three time cycles during the simulation. The time cycles are chosen to be
spaced a similar distance apart as the time cycle at which plots are given in the similar
simulation of Juric and Tryggvason [3]. These results show a mushroom shape developing
followed by a jet that supplies hot vapor to the developing bubble. The vapor jet persists and
the bubble does not pinch off as in the previous simulations. The bubble shapes, the velocity
field, and the temperature field are all quite similar to the results obtained in [3]. The one
notable difference is that the skirts found on the large bubbles in [3] have fragmented and
formed a smaller bubble in the present simulation. This difference may be due to the fact
that as interfacial features such as the skirt width approach the size of the grid spacing the
VOF method tends to fragment continuous interfaces whereas the method of Tryggvason
does not. We do not compare the Nusselt number as our initial conditions are quite different
in terms of the film thickness and shape which are important factors affecting the Nusselt
number.
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FIG. 12. Simulation results exhibiting mushroom shaped bubbles. Left column,t = 22.7; center column,
t = 42.2; right column,t = 61.7.

VI. CONCLUSIONS

An approach to computing boiling flows based on Young’s enhancement of the VOF
method has been presented. The interface geometry associated with Young’s method pro-
vides a convenient basis with which to accurately calculate the discontinuous normal com-
ponent of the heat flux vector that drives the mass transfer. A similarity solution has been
presented that provides a rigorous test of a computational method’s ability to accurately
compute the temperature profile in boiling flows. We feel that Young’s enhancement of VOF
is a viable alternative to simulating gas-liquid flows including the case with mass transfer.
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We note extension of Young’s method to three dimensions is straightforward and the mass
transfer model described in this paper generalizes easily to three dimensions.
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